Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Ann Hematol ; 101(9): 2053-2067, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1919767

ABSTRACT

Prior studies of antibody response after full SARS-CoV-2 vaccination in hematological patients have confirmed lower antibody levels compared to the general population. Serological response in hematological patients varies widely according to the disease type and its status, and the treatment given and its timing with respect to vaccination. Through probabilistic machine learning graphical models, we estimated the conditional probabilities of having detectable anti-SARS-CoV-2 antibodies at 3-6 weeks after SARS-CoV-2 vaccination in a large cohort of patients with several hematological diseases (n= 1166). Most patients received mRNA-based vaccines (97%), mainly Moderna® mRNA-1273 (74%) followed by Pfizer-BioNTech® BNT162b2 (23%). The overall antibody detection rate at 3 to 6 weeks after full vaccination for the entire cohort was 79%. Variables such as type of disease, timing of anti-CD20 monoclonal antibody therapy, age, corticosteroids therapy, vaccine type, disease status, or prior infection with SARS-CoV-2 are among the most relevant conditions influencing SARS-CoV-2-IgG-reactive antibody detection. A lower probability of having detectable antibodies was observed in patients with B-cell non-Hodgkin's lymphoma treated with anti-CD20 monoclonal antibodies within 6 months before vaccination (29.32%), whereas the highest probability was observed in younger patients with chronic myeloproliferative neoplasms (99.53%). The Moderna® mRNA-1273 compound provided higher probabilities of antibody detection in all scenarios. This study depicts conditional probabilities of having detectable antibodies in the whole cohort and in specific scenarios such as B cell NHL, CLL, MM, and cMPN that may impact humoral responses. These results could be useful to focus on additional preventive and/or monitoring interventions in these highly immunosuppressed hematological patients.


Subject(s)
Antineoplastic Agents , COVID-19 , Antibodies, Monoclonal , Antibodies, Viral , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , Early Detection of Cancer , Humans , SARS-CoV-2 , Vaccination
2.
Int J Environ Res Public Health ; 17(22)2020 11 12.
Article in English | MEDLINE | ID: covidwho-918937

ABSTRACT

This paper analyzes a sample of patients hospitalized with COVID-19 in the region of Madrid (Spain). Survival analysis, logistic regression, and machine learning techniques (both supervised and unsupervised) are applied to carry out the analysis where the endpoint variable is the reason for hospital discharge (home or deceased). The different methods applied show the importance of variables such as age, O2 saturation at Emergency Rooms (ER), and whether the patient comes from a nursing home. In addition, biclustering is used to globally analyze the patient-drug dataset, extracting segments of patients. We highlight the validity of the classifiers developed to predict the mortality, reaching an appreciable accuracy. Finally, interpretable decision rules for estimating the risk of mortality of patients can be obtained from the decision tree, which can be crucial in the prioritization of medical care and resources.


Subject(s)
Coronavirus Infections/mortality , Machine Learning , Pneumonia, Viral/mortality , Betacoronavirus , COVID-19 , Decision Trees , Humans , Pandemics , SARS-CoV-2 , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL